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Abstract-The quasistatic inflation of a nonlinear viscoelastic spherical membrane by monotonically
increasing pressure is considered. The deformation is assumed to be spherically symmetric. For the
constitutive equation assumed, circumstances are shown to exist when the radius history must either have a
jump discontinuity or bifurcate. A necessary condition for bifurcation and its dependence on material
properties and radius history is analysed. Examples of bifurcation for various pressure histories are
presented. Post-bifurcation branches are constructed and the possibility of secondary bifurcation is
discussed.

I. INTRODUCTION

A fascinating phenomenon in nonlinear elasticity arises in the problem of the inflation of a
spherical membrane by internal pressure. Using the Mooney form of strain energy function and
assuming spherically symmetric deformation Green and Shield[l] showed that there could be
more than one equilibrium state corresponding to each internal pressure. This paper considers
the analogous situation when the membrane material is viscoelastic. In particular, there may be
a pressure history which generates several possible radius histories. An example is presented in
which such pressure histories are constructed. The corresponding radius histories arise by
bifurcation from a common history.

Consider first how bifurcation occurs in the elastic case. Starting from the undeformed state
let the membrane be subjected to a continuous monotonically increasing pressure history. The
deformation is considered quasi-static and can therefore be determined from the pressure
radius relation obtained by Green and Shield. This relation is shown schematically in Fig. 2(a).
As the internal pressure increases from zero, a continuous monotonically increasing radius
history is found from the portion of the I-x relation to the left of the local maximum. If the
internal pressure, increases beyond this local maximum, the radius history has a jump dis
continuity and then is found from the monotonically increasing portion of the I - x relation to
the right of the local minimum. Thus a jump discontinuity in radius history is produced even
though the pressure history is continuous. In order to construct a continuous radius history.
the pressure must be reduced after reaching the local maximum. The radius history then
bifurcates into two continuous branches which are found by using the portions of the I-x
relation to either side of the local maximum.

There are several reasons for avoiding a jump discontinuity in the radius history. The
internal pressure being greater than the local maximum of I implies that the membrane wall
force and pressure resultant are no longer in balance and inertial effects must be considered.
The apparent size of the jump discontinuity suggests that inertial effects could be quite
considerable. If the occurance of this phenomenon in polymer processing, such as blow
forming, is considered, the motion is no longer under control. This is an undesirable situation
since, for example, the sudden increase in radius could be so large that the corresponding
reduction in wall thickness could lead to bursting.

When the membrane is viscoelastic, the above bifurcation analysis is complicated by history
effects. The example presented here shows that the requirement of a continuous radius history
can still lead to bifurcation. The question of restrictions on constitutive equations as related to
the possibility of bifurcation is not considered. It is assumed that just as in the elastic case,
there are material models for which bifurcation is possible. The example also includes the
determination of the post-bifurcation solution branches corresponding to a given pressure
history. The stability of such branches is not considered.

The governing equations are presented in Section 2. The material is modeled by a nonlinear
single integral constitutive equation which displays Mooney elasticity in its instantaneous and
long time equilibrium response limits. Consequently, the response of the spherical membrane is
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described by a nonlinear single integral equation for the radius history, given the pressure
history. A bifurcation condition for a general equation of this type is derived in Section 3. The
solution procedure is outlined in Section 4. The problem is reformulated so that at each time it
is analogous to the elastic problem described above. However, the form of the analogous I-x
relation from which the current radius is found from the current pressure depends on the past
history. The properties of this relation and its variation with past history are discussed in
Section 5, for the constitutive equation of Section 2. Using these properties, pre-bifurcation
response is discussed in Section 6. Sections 7 and 8 are concerned with the construction of
post-bifurcation branches. Numerical results are presented in Section 9. Certain results suggest
an explanation for the apparent instability observed during the inflation of polymer fluid
membranes. Other results indicate the comp1icated relation between material parameters,
pressure histories and the possibility of bifurcation.

2. FORMULATION

Let the spherical membrane, in its undeformed state, have mean radius ao and wall
thickness ho' The membrane is assumed sufficiently thin, hjao ~ I, so that the usual membrane
approximations are valid. In particular, a physical variable has the same value on the
mid-surface as at any point through the thickness. The deformation will be described with
respect to a spherical polar coordinate system whose origin coincides with the center of the
undeformed spherical membrane. In view of the symmetry of deformation, a particle of the
membrane surface initially at (avo 8, 4» moves radially to (p(ao' t), 8, 4» at time t. The principal
stretch ratios in the membrane surface are equal and are denoted by

(1)

Letting h(t) denote the wall thickness at time t, the radial stretch ratio is defined by the relation

The membrane material is assumed incompressible so that at each time

I I
A, = AnA", = A2 •

(2)

(3)

Let p(t) denote the internal pressure at time t. The principal stresses Uo and u'" are equal
and are denoted by u(t), where dependence on initial radius ao is suppressed for notational
convenience. Assuming quasi-static motion, the force balance condition becomes [2]

Using (1)-(3), this becomes

( ) _ 2u(t)h(t)
p t - p(t) . (4)

(5)

The constitutive equations is one that was used in previous studies [3,4] to illustrate a
method for analyzing large non-homogeneous deformations of nonlinear viscoelastic mem
branes. Its tensorial form is

where

I
t a

g; = R[C(t), 0] + -(--) R[C(s), t - s] ds,
oat - s

R[C(s),~] = R(~){[l + aI(s)]I - aC(s)},

RW=Co[(l-y)e-$TR+y], a>O, O<y<I.

(6)
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In the above, q is an arbitrary scalar arising from the incompressibility constraint, I denotes the
unit tensor, F denotes the current deformation gradient (F = [ax;/aXj] in Cartesian coordinates,
with current coordinates Xi = Xj(Xj. t) and reference coordinates Xj), C(s) =F(S)TF(s), and I is
the first stretch ratio invariant which is expressed in terms of the principal stretch ratios as

I = A/ +Al +A,{

Expressing (6) relative to the principal directions, and eliminating q on the basis that up(t) is
small compared to u(t), the constitutive equation for equal biaxial stretching in the spherical
membrane surface reduces to

. (2 I) 2 ('aR(t-S)[(2 I) (22 2>.2(S) A2 )]d
u(t)=Co A -A'! (I+aA)+ Jo a(t-s) A -A'! +a A A(s)-~+ A4(s) S, (7)

where A = A(t).
This describes a material whose instantaneous response is the same as a nonlinear elastic

solid of Mooney type, with Mooney parameter a (dimensionless) and elastic parameter Co
(dimensions of stress). Its long time equilibrium response also duplicates a Mooney elastic
material, with the same Mooney parameter, but with elastic parameter yCo' In a step stretch
test, the stress relaxes exponentially with a single relaxation time TR. This model incorporates
all essential features of nonlinear viscoelastic solid behavior. Since the short time response is
like that of a Mooney material, which is known to exhibit bifurcation of response, this model
should allow the influence of viscoelasticity to be assessed.

Substituting (7) into (5) gives the governing equation for the response of a viscoselastic
spherical membrane

1( 1) 2 1(' aR(t - S)[( 1) (2 2>. 2(S) I)]
p(t)="A I- A6 (I+aA )+"AJo a(t-s) I-r +a A(S)-~+A4(S) ds,

where

3. BIFURCATION CONDITION

For convenience, rewrite (8) as

p(t) = A(A(t» +f B(A(t), A(s), t - s) ds.

(8)

(9)

Assume that the membrane is initially undeformed and that A(t) is a continuous function of t.
Hence A(0) = 1 and it follows from (8) that P(O) = O. Let p(t) be a monotonically increasing
continuous function of t, and assume that (8) has a unique solution A(t) for 0:5 t:5 T*. Let the
solution bifurcate at time T* and denote the branches by A(t) and A(t) + I1A (t), T* :5 t (see Fig. I).
I1A(t) is a continuous function which satisfies

For some I1t > 0,

I1A(t) = 0,
;t 0,

0:5 t:5 T*
T*<t. (10)

(T.+l1t

P(T* + I1t) = A(A(T* +11t)) + Jo B(A(T* + I1t), A(s), T* + I1t - s) ds

(P+I1T
= A(A(T* + I1t) + I1A(T* + I1t» + Jo B(A(T* +11t) + I1A(T* + I1t),

A(s) + I1A(s), T* + I1t - s) ds. (II)
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Fig. l. Branching of the stretch ratio history at time T*.

For sufficiently small At and assuming appropriate smoothness for A and B, it follows from
(II) and (10) that

e~ (A(T* +At» +LT*+D.t 8~~) (A(T* +At), A(s), T* +At - s) ds }AA(T* +At)

(T*+D.t aB _
+Jr- 8A(s) (A(T* +At), A(s), T* +At - s)A'\(s) ds +o(A'\):: O. (12)

where

A'\:: max IA'\(s)l, s£[T*, T*+At].

Divide through (12) by At and consider the limit as At .... O. By (10),

I fT*+D.T aB
lim -;:- 8'( ) (A(T* +At), '\(s), T* +At - s)AA(s) ds
D.t->O r.at T* 1\ S

= 8~fs) ('\(T*), A(T*), O)AA(T*) = O.

Defining

lim AA(T* + At) A(T*),
D.t->o At

(12) reduces in the limit to

T*

e~(A(T*»+ L 8~~)(A(T*),'\(S), T*-S)ds}A(T*)::O. (13)

Thus, a necessary condition that the solution bifurcate at time T*, i.e. A(T*) ~ 0, is that

8
,8(t){A('\) + (T* B(A(t), '\(s), T* - s) ds}1 = o.

1\ Jo A(t)=A(T*)
(14)

Condition (14) has two interpretations. If the bifurcation time T* is specified, then (14) acts
as a constraint on solutions of (9). Conversely, if a solution to (9) is being constructed, then the
left hand side of (14) acts as a side condition for determining whether the solution is
approaching possible bifurcation. This is discussed in the next section.
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4. ANALYTICAL DISCUSSION

The solution of (9) can be illustrated graphically. Suppose the stretch ratio history previous
to time t, A(S), S E [0, t), has been found. Based on the right hand side of (9), define the
response function

I(x, t):; A(x) +f B(x, A(S), t - s) ds, (15)

whose dependence on x is clearly influenced by past history. Then, according to (9), A(t) is the
solution to the equation

P(t):; I(x, t). (16)

In this way, the determination of the stretch ratio history can be represented graphically as in
Fig. 3. This construction procedure also allows a convenient graphical interpretation for
bifurcation condition (14). In view of (15), this can be expressed as

a~ I(A(T*), T*) == O. (l4a)

Thus, the bifurcation condition can be satisfied at time t if the solution of (16) lies at a local
maximum of I(x, t) with respect to x. At other times t', the left hand side of (14) or (l4a) gives
the slope of I(x, t') at the solution of (16). A decrease in its magnitude as time increases
indicates impending bifurcation.

The satisfaction of the bifurcation condition depends on whether I(x, t) has a local
maximum in x. For the particular model presented in Section 2, the x dependence of I(x, t) at
fixed t and its change with time can be discussed in some detail. To this end, let (8) be rewritten
as

pet) ::: C(t) -!?Ul+aA 2(1.--h)
A A A A

where

C(t):; R(t) +a f R(t - S)(A 2(S) + l/A4(S» ds,

D(t):; R(t)+2af R(t- s)A 2(s)ds,

R(s):; dR(s)/ds, and R(g)::: (1- 'Y) e-t + 'Y, following non-dimensionalization.
Response function (15) for this case becomes

(17)

(17a)

(18)

At each time, coefficients C(t) and D(t) are determined by the previous solution history. As
they vary with time, so does the form of I(x, t).

The specific form of I(x, t) given by (l7a) and (18) allows its dependence on x and t to be
studied in some detail. It is shown that for sufficiently small a, f(x, t) starts off with the form in
Fig. 2(a). As time increases, it tends to flatten out and may evolve into the form in Fig. 2(b).
These results are developed in the next sections.

5. PROPERTIES OF f(x, t)

The dependence of I(x, t) on x for fixed t is discussed in (i}-(iv) below. Let tea) > 0 denote
a time depending on a. Ea2h result below is valid in a different time interval [0, tea)]. In order
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Fig. 2. Dependence of the form of f(x, t) on the relative values of a and g(x, I); (a) 2 positive real roots, (b)
opositive real roots.

to avoid cumbersome notation reference to t(a) is omitted but understood, except when the
result is valid for all t 2: O. Note that R(t) > 0, R(t) < 0, A(t) 2: 1.

(i) Since the leading terms in (l7a) are positive and the integrals are negative C(t) > 0,
D(t) > 0 in some time interval. It can also be seen that D(t) - C(t):5 0, for t 2: O.

(ii) From (18) and (i),

f(l, t) = C(t) - D(t) 2: 0, t 2: 0,

f(x,t)"'" -D(t)/X7~ -00 as x~O,

f(x, t) "'" aX as x ~ 00, t 2: O.

(iii) From (l7a) and (18)

af (x, t) = fAx, t) = (ax 8
- c(t)x6 +5ax2 +7D(t»/x8

ax

(19)

For each a there is a time interval and an x-interval, 1:5 x :5 X (t, a), x(t, a) > 0, in which the
leading terms dominate and fAx, t) > O. Also

fAx,t)~a as x~oo, t2:0.

Thus, fAx, t) has positive slope as x~O, in a neighborhood to the right of x = I, at least
initially, and as x~oo.

(iv) The following analysis is based on that of Green and Shield[l] as presented in Green
and Adkins ([2], p. 161). For f(x, t) to have a local maximum, then by (19) there is some x for
which

(20)
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Assume a> 0 and C(t) > 0, D(t) > 0 for the present. Applying Descartes' rule of signs[5], (20)
has 2 sign alternations and therefore either 0 or 2 positive real roots. In view of results (iii), if
there are no positive real roots, then fAx, t) > 0, 0 < x < 00. If there are 2 positive real roots,
fAx, t) < 0 for x in some bounded subinterval of [0,00). When fAt, t) > 0, these roots cor
respond to a local maximum and minimum of f(x, t), both roots being either less than x = I or
both greater. f(x,O) coincides with the function discussed in Green and Adkins [2]. It was shown
there that when 0 < a < 0.21, fAx,O) has 2 roots which are both greater than x = I. The same
will be expected when t > O.

A necessary condition that (20) have 2 positive real roots is obtained from (19) and the
requirement that fAx, t) < 0 on some interval of x. It is the following inequality:

C(t)l-7D(t)
a< l+5y =g(y,t), say, (21)

where y = x2
• To determine when (21) is met, it is necessary to study the properties of g(y, t).

First, note that

ag ( ) _ ( ) _ - C(t)l +(lOC(t) +28D(t))y3 +35D(t)
ay y, t - gy y, t - (l +5y )2 .

Then, by a discussion similar to the above, it can be shown that for some time interval

g(l, t) = -(7D(t)- C(t))/6<0, gy(l, t) = (9C(t) +63D(t))/36 > 0

g(y, t) "'" C(t)/y > 0, gy(y, t) "'" - c(t)/l < 0, y ~ I

and gy(y, t) has a single positive reai root. Thus, g(y, t) has a local maximum at Ym(t) given by

Ym3(t) = 5 + 14D/C + [(5 + 14DICf x 35DIC]1/2. (22)

For sufficiently small t, D(t)/C(t) "'" 1 and Ym(t) is much greater than I. If (21) is met, this
occurs for y(or x) > I. The two roots of fx are thus greater than one and f(x, t) has a local
maximum for x> I, the physically meaningful range. It remains to be determined whether
g(Ym(t), t) is sufficiently large that (21) is met. The possibilities are illustrated in Fig. 2. Which
situation arises depends on a and the interaction of previous stretch ratio history and relaxation
properties as reflected in the values of C(t) and D(t).

When a = 0, (l7a) shows that C(t) = D(t) = R(t). (20) has the single root x = 71
/
6 > I,

t 2: O. It follows from the above results that for t 2: 0, f(x, t) has only a local maximum with
f(l, t) = 0 and f(x, t)~ 0 as x ~ 00. The properties of g(y, t) are not needed in this case.

The change of f(x, t) as t increases is discussed in (v)-(viii) next. Attention is confined to
stretch ratio histories for which A(s) > o.

(v) Integrating C and D in (l7a) by parts and then differentiating gives

c= R(I + 2a) + a f R(t - s)(2A(s) - 4/A 5(s»A(s) ds,

D= R(I +2a) +a f R(t - s)4A(s)A(s) ds,

It follows that D(t) - C(t) s 0, D(t) s 0, t 2: 0 and C(t) s 0 for some time interval.
(vi) From (l7a) and (18).

(23)

For t 2: 0, f,(I, t) 2: O. For each a, there is a time interval and an x-interval, 1< i(t, a) S x <
00, in which the leading term dominates and f,(x, t) < O. The integral also becomes negative for

USS Vol. 14, No. 3--C
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sufficiently large A(s) and x. When a =0, f,(I, t) =0 and f,(x, t) <0, x > I, t ~O. Thus, except in
a neighborhood of x = I, f(x, t) decreases with t.

(vii) By (17a), C(O) = D(O) = 1. According to the discussion in Green and Adkins [2],
max g(y, 0) = 0.21. Thus, for 0~ a < 0.21, f(x,O) is as shown in Fig. 2(a). For such a, there is a
time interval in which g(Ym(t), t) > a and f(x, t) has a local maximum. Let xm(t) be the root of
(20) corresponding to this local maximum, and define fm(t) = f(xm(t), t) and 1m =dfm/dt. Then,
since IAxm(t), t) = 0,

lm(t) = R(1 +2a)(I-~)...L+ a (' R(t - S)[I-~-)( )]2A(S)A(S) ds. (25)
Xm xm)1) Xm 1\ S Xm

Letting xm(t, a) denote a root of (20), then x",(t, 0) = 71/6• If the variation of xm(t, a) with a is
sufficiently smooth, then there is some time interval in which xm(t, a) """ 71/6. The leading term of
(25) dominates and Im(t) < O. When a = 0, I",(t) = R(1 T 1)T 116 < 0, the local maximum 01
I(x, t) decreases with t.

(viii) Recalling Ym(t) given by (22), define gm(t) = g(y",(t), t) and g", = dgmldt. Then using (21),
(23) and proceeding as in (vii) .

By (22) there is some time interval in which Ym3(t) is sufficiently large that gm(t) < O.

6. PRE-BIFUCATION SOLUTION OF (16), (18)

The behavior of (16) and (18) as the solution approaches befucation can now be discussed.
Consider continuous pressure histories with .P(t) >0 and continuous stretch ratio histories A(t),

with A(0) = 1. It is first shown that A(t) monotonically increases in some time interval.
Since A(t) satisfies (16),

.P(t) = fx('\(t), t)A(t) + f,(A(t), t).

By (iii), fx(1, 0) > 0 and by (vi) 1,(1, 0) = 0 so that

.. p(O)
A(0) = P(O)IfAl, 0) = 6(1 +a) > O.

(26)

(27)

For some small time interval (26) implies A(t) = 1+A(O)t +O(t2
). Using this and neglecting terms of

O(t 2
), it can be shown from (24) that f,(A(t), t) = R(O)'p(O)t < O. Together with (vi), this implies

1,(A(t), t) <0 for some time interval. Since (iii) implies that fAA(t), t) > 0, it follows from (26)
that A(t) > O. Furthermore, by (19) and (24), when a = 0, it follows from (26) that A(t) > 0 as
long as A(t) < 7116. This suggests that for each a> 0, there is some time interval in which
A(t) > O.

Alternatively, when p(t»O, there is some time interval in which (16) has a continuous
monotonically increasing solution A(t) determined by f(x, t), 1~ X S xm(t). If 0 S as 0.21,
result (iv) shows that f(x, t) has a local maximum and minimum as in Fig. 2(a). As the solution
progresses fm(t) monotonically decreases (result (vii» and, except for a neighborhood of x = 1,
so does f(x, t), (result (vi». A graphical representation is shown in Fig. 3.

A continuous solution can be constructed in this way as long as

P(t) S f(xm(t), t) = f",(t). (28)

However, this condition may cease to be satisfied. If a =0, A(t) increases and fm(t) decreases
as long as A(t) < 71/6. Since f",(t) occurs at x = 71/6, a time T* always exists such that

P(T*) = f[x",(T*), T*]. (29)
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{(X,II)

{(X,12 )

{(x, /,)

x

Fig. 3. Graphical representation of the construction of stretch ratio history A(t) up to bifurcation.

For 0 < a < 0.21, the time interval in which A(t) increases and fm(t) decreases may be long
enough that (29) is met. On the other hand, since gm{t) < 0 (by (viii», the situation is
approaching that in Fig. 2(b). f(x, t) becomes monotonic and the possibility for bifurcation
vanishes. For the present, it will be assumed that (29) is satisfied.

For t> T*, if P(t) > P(T*), then P{t) > f(xm{t), t). The only solution to (16) (a > 0) will lie
on the monotonically increasing part of f(x, t) beyond the local minimum, thereby inducing a
jump discontinuity in the stretch ratio history (see Fig. 3). If a continuous solution is to be
maintained, then P(t) must decrease for t> T*.

A unique continuous continuation to A(s), 0 < s < T*, can be obtained if

P{t) = f(xm(t), t), t~ T*, (30)

which is A(t) = xm(t), t ~ T*. On the other hand, if P(t) is decreased faster than f(xm(t), t), then
two continuous continuations can be found, A-(s) and A+(s), determined by solutions of (18) for
1:s; x :s; xm(t) and xm(t):s; x, respectively.

In this way, T* is seen to be a bifurcation time, and the existence of a local maximum of
f(x, t) is seen to be a necessary condition for bifurcation. This latter is equivalent to condition
(l4a).

7. POST-BIFURCATION RESPONSE

The construction of branches following bifurcation .leads to a number of interesting
complications. For the present, let f(x, t) be as depicted in Fig. 2(a). Discussion as to how this
form changes will be given in Section 8.

If P(t) decreases faster than f(xm(t), t), t> T*, two stretch ratio histories are generated,
A-(s) and A+(s) > A-(s), as discussed above. Two sets of coefficients (l7a) are generated,
(C-(t), D-(t» from A-(s) and (C+(t), D+(t» from A+(s), O:s; s:S; t. By (18), this generates two
response functions r(x, t) and r(x, t). These are assumed to have the same form as the
prebifurcation f(x, t), at least for t near T*, with local maxima at Xm-(t), xm+(t), respectively.
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Let X;;'in(t) and X;:-'in(t) denote the abscissae of their local minima. Then A-(t) is the solution of

and A+(t) is the solution

The separation of f(x, t) into response functions for each solution branch can be deter
mined. Let Am°(t) = xm°(t) be the solution of (30), i.e. the solution obtained when P(t) follows
the local maximum of f(x, t), t> T*. Denote the response function based on this history as
r(x, t) and introduce the variations

15A *(t) = A*(t) - AmO(t), 15x:(t) = x:(t) - xmO(t), t?= T*,

15A *(t) = 15x:(t) = 0, 0:5 t:5 T*, (31)

15f:(t) = f";Ax";At), t) - fmO(xm(t), t),

where * denotes + or -. Then the variation 15f:(t) due to the variation in stretch ratio history
15A *(t) can be shown to have form.

(32)

By result (iv) of Section 4, when a =0, AmO(s) =xmO(s) =71
/
6

• If it is assumed that this is a
reasonable approximation for some a > 0, then the quantity in the square brackets is positive.
Numerical results support this assumption. Since R(t) < 0, there is some time interval following
T*, in which

15fm-(t) > 0 for 15A *(s) = 15A -(s) < 0,

15fm+(t) < 0 for 15A *(s) = 15A +(s) > O.
(33)

For fixed x, the variation 15f*(x, t) = f*(x, t)- r(x, t) has the same form as (32) with xmO(t)
replaced by x. Except for some neighborhood of x = I, a similar discussion suggests that (33) is
also true for 15f*(x, t) (see Fig. 4). It follows that a necessary condition for two continuous
branches to be generated is

(34)

Comment 1
Let r(x, t) have a local minimum at X;:-'in(t). If P(t) < r(X;:-'in(t), t), then a continuous

f

r(x, f)

'"(x,d
,0 (x, f)

I x

Fig. 4. Response functions for each branch following bifurcation.
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continuation of ,\+(t) no longer exists. With this and (34), it is seen that upper and lower bounds
on P(t) are needed in order that ,\ -(t) and ,\ +(t) have simultaneous continuous extensions.

Comment 2
Suppose for some time T**> T*, P(t) coincides with r(xm+(t),t) or r(X:;'in(t),t). A

repetition of the preceding discussion shows that there can be secondary bifurcation from the
solution branch ,\ +(t) at time T**. This suggests that pressure histories P(t) can be constructed
for which any number of bifurcations can be produced at arbitrary times.

8. CHANGE OF FQRM OF RESPONSE FUNCTIONS

To this point, it has been assumed that in the time intervals of concern, the response
functions f(x, t) have a local maximum and a local minimum. The time dependence of C and D
in (17) allows the structure of f(x, t) to vary significantly. Recall result (viii), Section 4, that
Km(t) < O. If gm(t) > a initially, so that f(x, t) has the form shown in Fig. 2(a), then as t increases
it may happen that gm(t) < a and f(x, t) becomes monotonic as in Fig. 2(b). Suppose this
happens at time T. If P(t) increases sufficiently slowly, then for t> T, fAx, t) > 0, 1s x < 00, and
the bifurcation conditions (l4a) or (29) will never be met. The alternative, that this condition is
met before f(x, t) becomes monotonic, will be discussed first.

The preceding discussion on the evolution of f(x, t) to monotonicity also applies to r(x, t),
r(x, t) and r(x, t). Let gO(y, t), g-(y, t) and g+(y, t) denote their respective condition functions
for negative slopes. Denote the locations of their respective maxima by Ym°(t), Ym-(t), Ym+(t),
respectively. Then in"some interval [T*, it the variation 5g:'(t) = g*(y::,(t), t)-gO(YmO(t),t)
due to variation 5,\ *(t), defined in (31), can be obtained by an argument similar to that in
Section 7. It can be shown that

5gm-(t) > 0 for 5,\ *(s) = 5,\ -(s) < 0,

5gm+(t) < 0 for 5,\ *(s) = 5,\ +(s) > O.

It may happen that g+(Ym+(t), t) < a while g-(Ym-(t), t) > a, which means that r(x, t) becomes
monotonic before r(x, t).

Comment 3.
The restrictions on P(t) referred to in Comment 1 no longer apply. If P(t) is now free to

coincide with the local maximum of r(x, t) at some time T***, this becomes a bifurcation time
for new solution branches for ,\ -(t).

f(x, t), (or f*(x, t) following bifurcation) can also change form due to sign changes of C or
D. This possibility is indicated by result (v), that they monotonically decrease. Two possible
cases arise:

(a) D < 0, C < 0 will occur first. Condition (20) for local maxima and minima of f(x, t)
becomes

ax8
- C(t)x6 +5ax2 -7ID(t)/ = o.

The three sign alternations imply that there are either 1 or 3 positive real roots. The possible
forms for f(x, t) are shown by Fig. 5 but will not be discussed further here.

(b) D < 0, C < 0, Condifion (20) become's

ax8 + IC(t)lx6 + 5ax2 -7ID(t)1 = o.

which has only 1 positive real root. f(x, t) must have the form shown in Fig. 5(b).
Suppose the response functions evolve into either of these forms as the solution branches

are being determined. The value of ,\ -(t) or ,\+(t) relative to the abscissae of the local maximum
or local minimum must be considered in order to construct continuous extensions. For example,
it might be anticipated that if r or r has the form indicated in Fig. 5(b), then ,\ - > x~n and
,\ + > x :;'in' If r or r has the form indicated in Fig. 5a, it is likely that Xmin 1< ,\- < x;;"'x and
x:;'ax <,\ + < X:;'inro
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Fig. 5. Dependence of the forms of f(x, t) on the stretch ratio history; (a) C > 0, D < 0; (b) D < 0, C < o.

Comment 4.
From (17), the instantaneous elastic response is determined by the equation

say, where Ao =A(O+) and Po =P(O+). Note that cP(x) =I(x, 0). As mentioned in Section 2, the
long term equilibrium response satisfies P oo = 'YcP(A",).

The asymptotic values of C(I) and D(t) as t~oo, ~A(t)~A(oo), can be found from (17a) and
substituted into (18) to give I(x, (0). Depending on the values of a and A." I(x, (0) may appear as
in Figs. 2(b), 5(a) or 5(b). In view of (16) and (18), A., also satisfies P00 = F(x, (0).

As a consequence of the redefinition of the original eqn (l7)-{18), I(x, (0) and cP(x) may have
different forms. It can be shown, however, that I(A." (0) = 'YcP(A.,).

9. NUMERICAL RESULTS

The numerical procedure for solving the governing equation (8) illustrates the analysis of
Sections 4-8. The integrals in (l7a) are approximated by expressions of the form

i t • f'n dR
R(t - s)f[A(s)] ds = - -d (t. - s)/[A(s)] ds

o " s
.-1

"" wJ[A(t.)] +~l w.J[A(td]' (35)

where (tl = 0, t2, ... , tk, ... , t. = t) is some time partition. Weighting coefficients w., W.k

depend on the values of the relaxation function R(t. - td and the time increments, which are
not necessarily equal. The integrals are approximated by Simpson's rule over intervals [tk, tk+2].
Three point forward, central and backward approximations are used for the derivative of
R(t. - s) in this interval. For n even, the trapezoidal rule was used on [flo t2] and the derivative
was approximated by simple forward and backward difference expressions.

Substitution of the approxilJlations (35) for C and D into (18) and rearranging gives

C D

L L
P() • • _ 2( 1 1)t = - - --::r + ax - - ~

• x x x X

== I. (x), say,

(36)

C D
where ~, ~ are the appropriate partial sums from (35) and Ii = a(l- w.). Let xm(t.) satisfy

• •
d/:(xm)/dx =O. Starting with A(tl) = I, P(tl) =0, (36) was solved for A(t.) with 1:5 A(t.) <
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x",(t,,), using a Newton-Raphson scheme. If for some N

(37)

then another Newton-Raphson scheme was used to solve for time tN"' tN-I < tN0 < tN when the
left hand side of (38) vanished. Clearly, A(tN0) =:: Xm(tN0) and d!No(Xm(tNo»/dx "" O. Thus, in view
of the discussion at the end of Section 4, tN 0 is regarded as the bifurcation time. Equation (14)
was used as a monitoring condition to anticipate impending bifurcation.

Computations were made with the Mooney parameter a =:: 0.05 and the relaxation function
parameter'}' =:: 0.25. For this small value of a the response function was expected to have a well
defined local maximum and minimum over a time interval long enough to ensure that the
bifurcation condition would be met. Results for pressure histories P(t) =:: O.5t and P(t) =:: 3t are
shown in Fig. 6. The corresponding local maximum fm(t) =:: f(xm(t), t) and stretch ratio histories
are also shown. For each pressure history fm(t) decreases with t as derived in result (vii). The
intersection of the P(t) and fm(t) graphs gives the bifurcation time. The difference between the
values of fm(t) for the two pressure histories is too small to be shown on the graph. This is
primarily due to the small value of a. Figure 7 compares results for P(t) =:: 2t, t <:: 0, and when
this history is changed to P(t) =:: 0.5, t <:: 0.25. Even under continued expansion at constant
pressure, the bifurcation condition is met. Of striking interest is the steepness of the stretch
ratio histories near the bifurcation times. This arises from two sources. Firstly, the solution to
(16) eventually lies in a domain near xm(t) where fx(x, t) is decreasingly rapidly. This is a region
of rapid increase for A(t). Secondly, as f(x, t) decreases with increasing t the region of small
slope broadens so that A(t) increases even faster.
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r' ·0.197

06 1.6
P·.Q4OI

O!l rOoO.803 1.5 >.°'1.464

04 1.4
>.

0.3 1.3

0.2 1.2

0.1

~ ~ M 04 M M ~ M W ~ M 04 M M ~ M
f f

Fig.6. Histories of A(t) and fm(t) for two different pressure histories up to the bifurcation time.
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Fig.7. Comparison of responses for a monotonic pressure history and one whicb is constant for t > 0.25.
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In order to construct continuous extensions to the pre-bifurcation history A(tk), (k = I, 2,
c D

- .. , N*), the pressure was reduced for tn > tNo. Since ~ and ~ depend only on this
N°+l N*+l

pre-bifurcation history,!N0+l(X) is uniquely determined. For PU N0+I) < max I N0+I(X), (37) has two
solutions, A-(tN0+l) and A+(t N*+l)- Two past histories exist for tn> t N*+2, producing two sets of

c- D- c+ D+
coefficients ~, ~ , ~, ~ and two response functions In-(x) and In+(x). For each tn :2: t N0+2, A-Un)

n n n n

and A+(tn) are the solutions of (36) using In'-(x) and I/(x), respectively.
It was found that except for small x, !/(X) <!n-(x) and the condition function max8....(x)

approached a faster than max 8n-(x), as was discussed in section 6. However, owing to the
smallness of a, the difference in the functions was small. In the negative slope region of (37),
din+(x)/dx becomes very small and solution for A+(tn) becomes difficult. For this reason, A+(tn) was
specified. Then PUn) =f/(A +Un» and A-Un) was solved from (36) using !n-(X).

For some time interval beyond tN0, A+(/n) can increase. However, recalling Fig. 2(a), as
max g/(x) approaches a, the abscissae of the local maximum and minimum of !/(x) approach
each other. For this reason A+Un) was decreased until the time tn when max 8n+(x) < a. For
larger times fn-(x) becomes monotonic and A+(tn) could be arbitrary. Since max!n-(x»

2.2

2.0
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Fig. 8. Illustration of types of A+(tl branch histories following bifurcation.
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max in+(X), A-(tn) lies in a region where din-(x)/dx is sufficiently large that an accurate solution
to (36) could be found.

Figure 8 shows two sets of stretch ratio history branches following bifurcation due to
pressure history P(t):;:: t, t:5 T*. Branch A1+(t) represents a branch which rapidly becomes
large and must eventually be reduced. The monotonically increasing branch At(t) is shown for
comparison. A"(t) is the solution of (30). It ceases to exist when max Un"(x):;:: ii. The pressure
histories corresponding to A1+(t) and A2+(t) differ only slightly, which shows the sensitivity of
response following bifurcation.

Figure 9 shows the evolution of response functions r(x, t) corresponding to A1+(t) of Fig. 8.
In this case gm(oo) < a, while C+(oo) > 0, D+(oo) > 0 so that r(x, t) has the form shown in Fig. 2(b).
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Fig. 16. The possibility for bifurcation vs values of a for P(t) =t. The X denotes when fm(t) ceased to
exist.
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Fig. 11. Stretch ratio history for P(t) =t. a =0.15, indicating rapid increase even though there was no

bifurcation.
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Figure 10 shows fm(t) for various values of a when p(t) = t. When fm(t) intersects P(t),
response function f(x, t) has a local maximum which exists long enough for (l4a) to be satisfied
and bifurcation to occur. When the fm(t) graph terminates in an X, f(x, t) initially has a local
maximum which ceases to exist at tx and (14a) can never be satisfied. The numerical results
indicate that there is a critical value a* of the Mooney parameter, slightly less than 0.13, such that a
bifurcation time exists if a < a* and does not exist if a < a*.

These results suggest the conjecture that such a critical Mooney parameter exists for each
monotonically increasing pressure history. Conversely, for each value of the Mooney parameter
less than 0.21, there are pressure histories for which bifurcation is not possible.

Figure II shows the stretch ratio history when p(t) = t and a = 0.15. Although f(x, t)

becomes monotonic before p(t) becomes too large, it has a broad region of small slope.
(Imagine f(x, T*) in Fig. 3 replaced by f(x, t) in Fig. 2(b).) The steep portion of A(t) in Fig. II
arises when the solution of (16) lies in this flat part of f(x, t).

The steepness of the stretch ratio histories near their bifurcation times, in Figs. 6 and 7, and
in Fig. II may be related to the apparent instability observed by Joye, ,Poehlein and Denson[6]
in their experimental work on the inflation of flat membranes of certain polymers. This
instability may in fact be a rapid change in shape corresponding to the steep parts of A(t) in
Figs. 6, 7 or II, at least initially. If the experimental inflating pressure is not reduced, it may
exceed some critical condition, analogous to the local maximum of a response function.
Physically, this means that internal and external forces are no longer in balance and inertial
effects arises. The membrane continues to inflate until the decrease in wall thickness leads to
bursting. On the other hand, the experimental response may be better represented by the
situation of Fig. II. A critical pressure condition may not exist, but the increase in size becomes
so large that failure again occurs.
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